Murine inner cell mass-derived lineages depend on Sall4 function
نویسندگان
چکیده
منابع مشابه
Ohne Titel
Sall4 is a mammalian Spalt transcription factor expressed by cells of the early embryo and germ cells, an expression pattern similar to that of both Oct4 and Sox2, which play essential roles during early murine development. We show that the activity of Sall4 is cell-autonomously required for the development of the epiblast and primitive endoderm from the inner cell mass. Furthermore, no embryon...
متن کاملMurine B cell differentiation lineages
Subpopulations of mouse B cells express different amounts of two antigens (BLA-1 and BLA-2) recognized by rat monoclonal antibodies (53-10.1 and 30-E2). Two-color immunofluorescence analysis on the fluorescence-activated cell sorter (FACS) shows that the 53-10.1 monoclonal antibody reacts with a similar proportion of splenic B cells from normal and CBA/N (xid) mice, whereas 30-E2 reacts with mo...
متن کاملEffects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal
Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of s...
متن کاملDo trophectoderm and inner cell mass cells in the mouse blastocyst maintain discrete lineages?
The extent to which trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst remain distinct during the period from the commencement of cavitation up until 48 h later in culture was investigated. Fluorescent latex microparticles were used to label exclusively all TE cells in nascent blastocysts and the position of labelled progeny in cultured blastocysts was examined by dis...
متن کاملCompletely ES Cell-Derived Mice Produced by Tetraploid Complementation Using Inner Cell Mass (ICM) Deficient Blastocysts
Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2006
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0607884103